Ink as Testimony: Examination of Inks in Written Materials from the United States Holocaust Memorial Museum

Lynn B. Brostoff, Jennifer A. Wade

Ink as Testimony: Examination of Inks in Written Materials from the United States Holocaust Memorial Museum

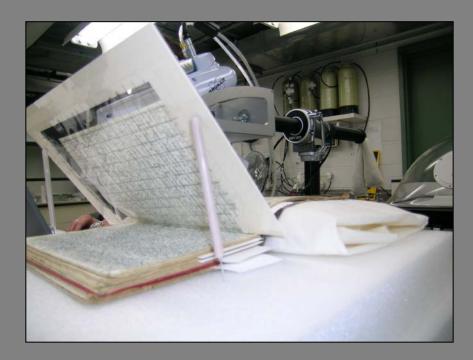
- 20th century ink overview
- setup of the Bruker XRF for analysis of historic documents
- the Otto Wolf Diary
 - written in hiding in Czechoslovakia
 - XRF data

- the Mandel postcard
 - sent from Radomsko Ghetto (Poland), censored by Gestapo
 - XRF, ESEM, and HSI data

20th Century Inks

Printing inks generally oil-based; colorants may include oil-soluble dyes and/or pigments; carbon black traditional and still used

Writing inks generally aqueous; need to flow and not clog (e.g., fountain pens); colorants often sulfonated and/or made into salts to solubilize; can also include pigments in suspension.


Iron gall inks -- commonly ferrous sulfate + gall extract mixture -still used, but mostly in official and legal documents, due to permanence; coal-tar dyes known to be subject to fading.

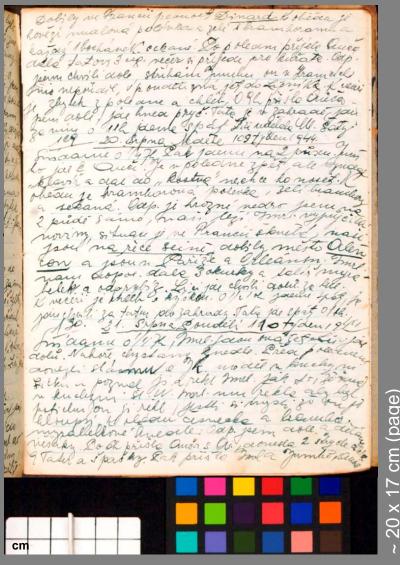
Inks often complex mixtures of:

multiple colorants;

organic additives/media, e.g., oils, gums, resins, solvents; inorganic additives/residues, e.g., pigments, drying agents.

In-situ qualitative XRF analysis of inks at USHMM

Bruker Tracer Handheld XRF

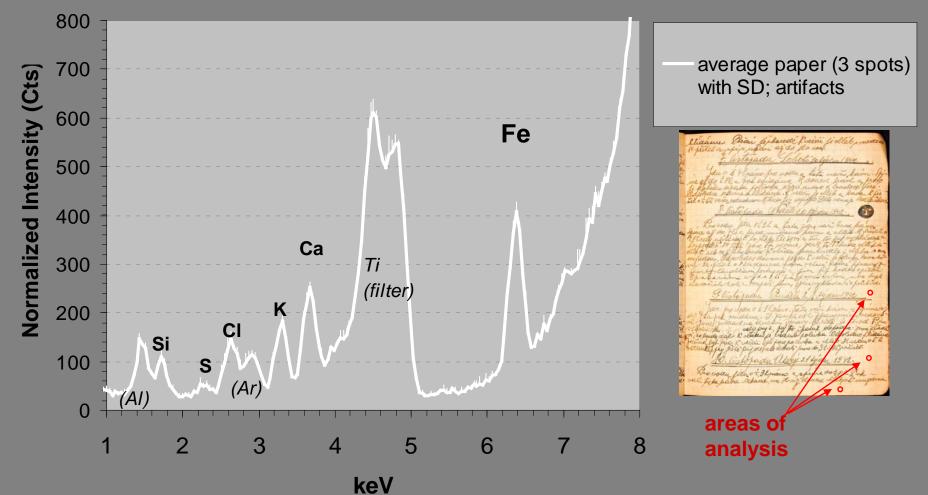

Rh tube, 300 sec. exposures
1) 15 kV, 14.6 - 25 μA, Ti filter, vacuum, for AI – Fe
2) 40 kV, 7 μA, Cu-Ti-AI filter, vacuum, for heavier elements

Qualitative XRF analysis of the Wolf Diary

Book I, section 1, 7 Nov. 1942

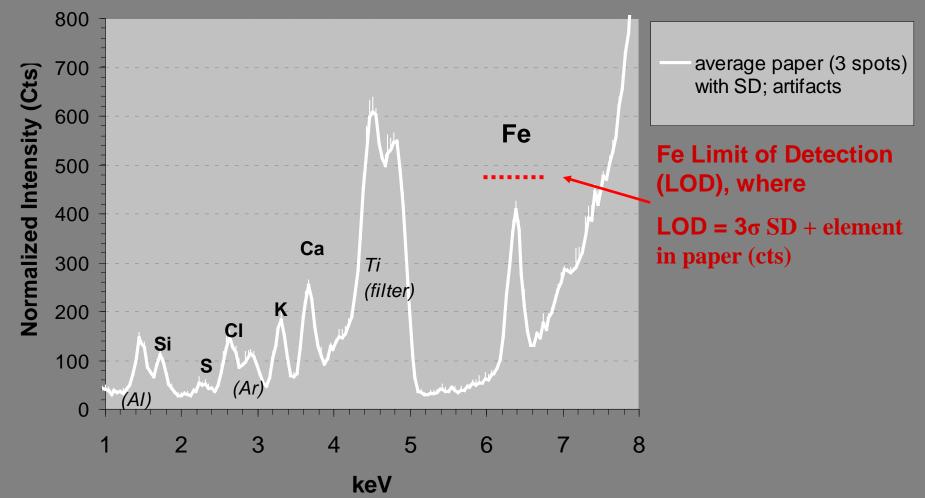
flidame Socare Jepharede Precere to allebamede spip usieni es de lla una). stopadu Intioto goledon 1960 du o E Il rans pro usdu a tata ware kave. we at do i the pak spiasure & douse pack a from pliste urgue maso & braclove fire Wedre selline & Ridacue, & neceri la alleb a kava dif sel o 762 veer odeuskuou & dues fiz vepiste Dels venes fo Neaeles o treden 1942 Louden fall bigh a fala jiges ware hurd ka do Ha huea subane have a chlib Pleely upstasty F. to repla Sector a two al shaller and as he faffrend de nesper som plucypladatio, Flistopadu Soudeli 2 1. 4 an 19 all the dodn't I shear . Tota var fair a spine ha fel suidame. St. Jampel ogh. Thany wan amel queday us duest cely puy i, by to spetue defeature. r to budg dal. Robetus je findente polevie Ocholedue lidae and by fine K vecini Wi Jose polerka a chleb & cidingo 5 th odentel pry riste pij de ele chas pue de St. Verrisel. O. listopadu Ulery 21 tyder 1942, Drowoau laho = 3hreace a spine do 28h. Lok vari tope para celame me d. as doues ellibrat museure

Book I, section 8, 20 August 1944



cm (page

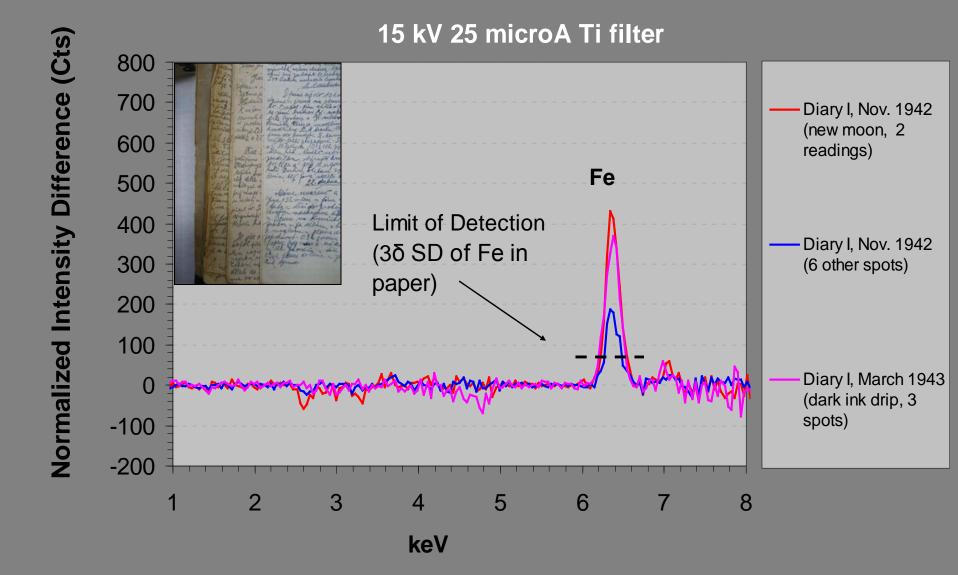
17 $\boldsymbol{\times}$


XRF spectra of Wolf Diary 1, Sec. 1, Nov. 7, 1942

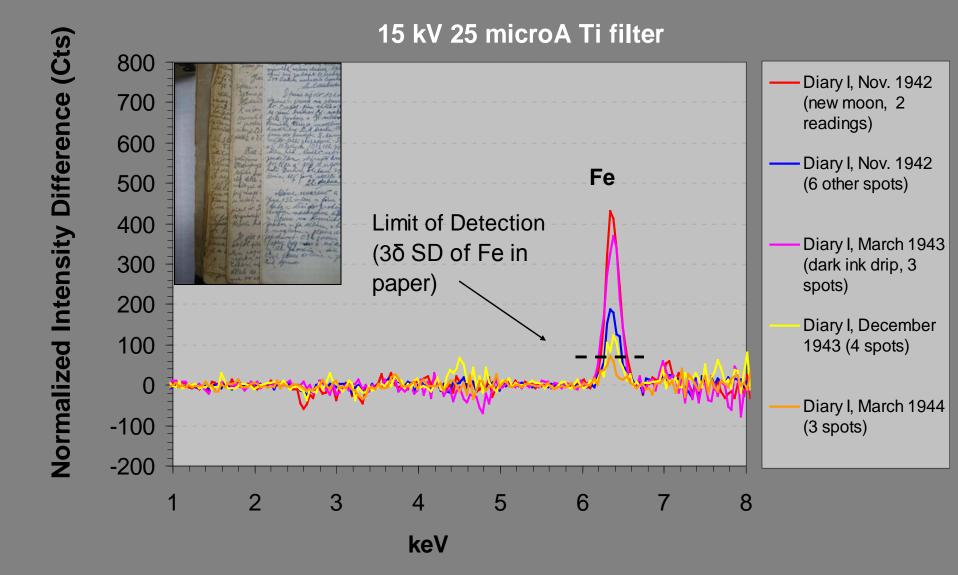
Paper Background and Variation (SD), 15 kV 25 microA Ti filter

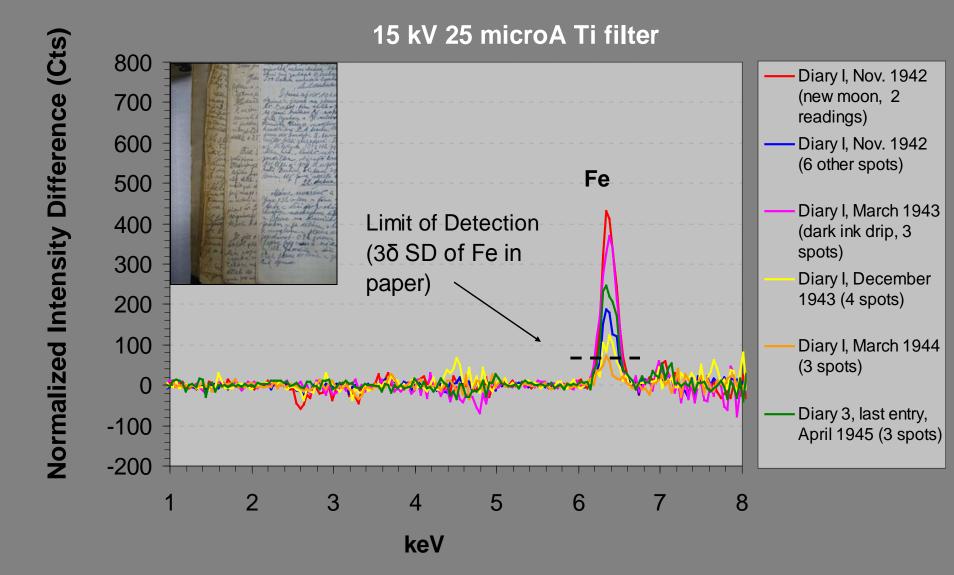
XRF spectra of Wolf Diary 1, Sec. 1, Nov. 7, 1942

Paper Background and Variation (SD), 15 kV 25 microA Ti filter



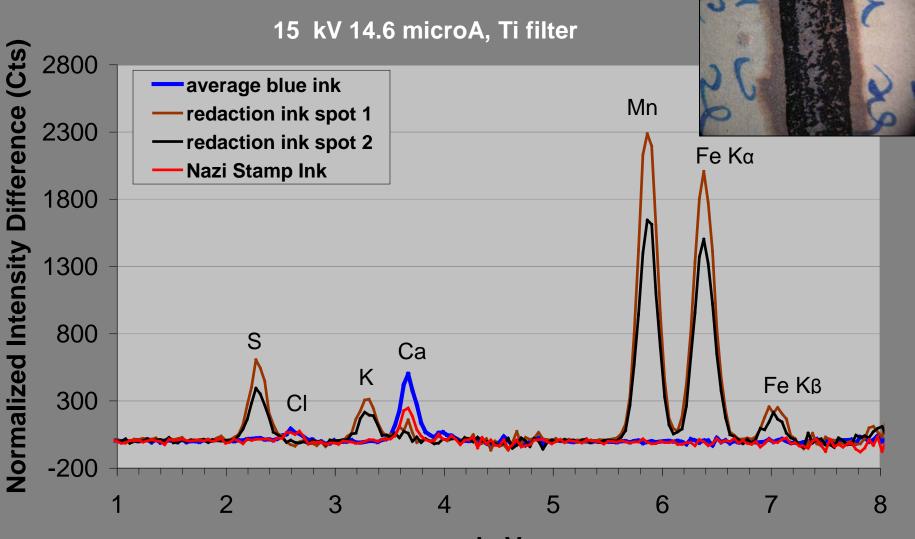
XRF spectra of Wolf Diary 1, Sec. 1, Nov. 7, 1942


Ink in Moon, 15 kV 25 microA Ti filter


Wolf Diaries: XRF subtraction spectra of average ink readings from various pages (ave. paper subtracted)

Wolf Diaries: XRF subtraction spectra of average ink readings from various pages (ave. paper subtracted)

Wolf Diaries: XRF subtraction spectra of average ink readings from various pages (ave. paper subtracted)


Qualitative XRF analysis of the Mandel postcard

Blue ink of text (recto and verso) **Brown-black** redaction ink (verso) **Red** Gestapo stamp ink (recto) **Red** printing ink of postcard (recto) **Black postal cancellation stamp** ink (recto) **Grey-black typewriter ink (recto) Grey pencil marks (recto)**

13.9 cm x 9.2 cm

Subtraction spectra of three inks (paper-subtracted) from Mandel postcard

keV

XRF-derived, elemental intensity ratios in paper and inks

_	paper 1	paper 2	paper 3	blue ink 1	blue ink 2	blue ink 3	blue ink 4	censor ink 1	censor ink 2
Ca/Cl	4.9	4.8	5.4	6.0	6.7	6.0	6.0	-4.7	-11
Ca/S	8.4	8.0	8.6	21	18	31	20	0.19	0.13
Fe/S	7.8	7.3	7.6	-2.8				3.5	4.1
Fe/K	6.3	5.3	6.5	98				6.5	7.0
Fe/Ca	0.93	0.91	0.89	-0.14				18	31
Fe/Mn	4.2	4.0	3.4	3.2				0.70	0.75
Fe/Si	6.7	6.9	7.0	-110	-0.93	4.4	6.8	220	120

• Relative intensity ratios give method of describing and comparing <u>detected</u> elements in one material

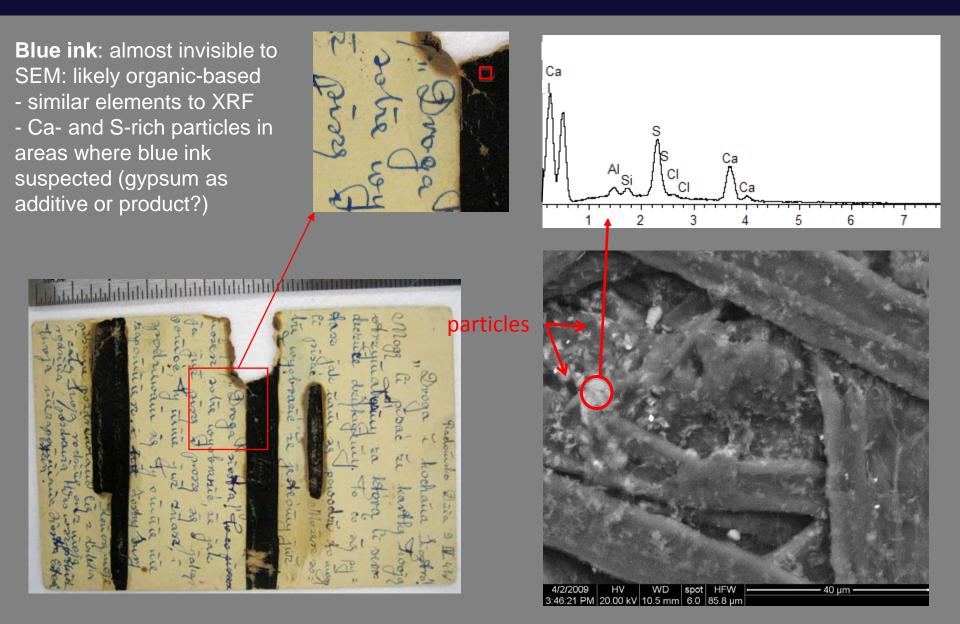
• Ratios are NOT CALIBRATED; represent relative intensities *detected with this instrument at this particular set of parameters,* not amounts

• Ratios in *paper* : from sum of 3-channel, normalized intensity of elements

• Ratios in *inks* from sum of 3-channel, normalized intensity of elements after subtraction of average paper counts

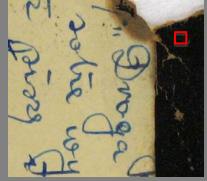
XRF-derived, elemental intensity ratios in paper and inks

	paper 1	paper 2	paper 3	blue ink 1	blue ink 2	blue ink 3	blue ink 4	censor ink 1	censor ink 2
Ca/Cl	4.9	4.8	5.4	6.0	6.7	6.0	6.0	-4.7	-11
Ca/S	8.4	8.0	8.6	21	18	31	20	0.19	0.13
Fe/S	7.8	7.3	7.6	-2.8				3.5	4.1
Fe/K	6.3	5.3	6.5	98				6.5	7.0
Fe/Ca	0.93	0.91	0.89	-0.14				18	31
Fe/Mn	4.2	4.0	3.4	3.2				0.70	0.75
Fe/Si	6.7	6.9	7.0	-110	-0.93	4.4	6.8	220	120


- Six of these ratios appear characteristic for the paper
- Ca/CI ratios characterize the blue ink

XRF-derived, elemental intensity ratios in paper and inks

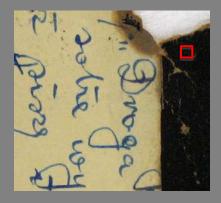
_	paper 1	paper 2	paper 3	blue ink 1	blue ink 2	blue ink 3	blue ink 4	censor ink 1	censor ink 2
Ca/Cl	4.9	4.8	5.4	6.0	6.7	6.0	6.0	-4.7	-11
Ca/S	8.4	8.0	8.6	21	18	31	20	0.19	0.13
Fe/S	7.8	7.3	7.6	-2.8					4.1
Fe/K	6.3	5.3	6.5	98			3.4	6.5	7.0
Fe/Ca	0.93	0.91	0.89	-0.14			0.066	18	31
Fe/Mn	4.2	4.0	3.4	3.2			11	.0.70	0.75
Fe/Si	6.7	6.9	7.0	-110	-0.93	4.4	6.8	220	120

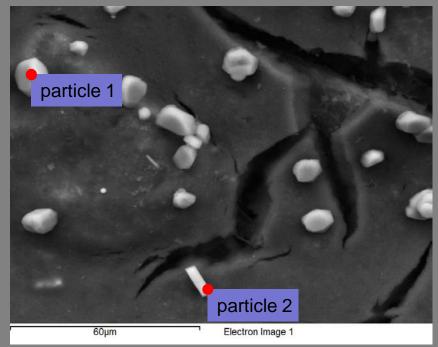

• Several intensity ratios characterize the censor's redaction ink

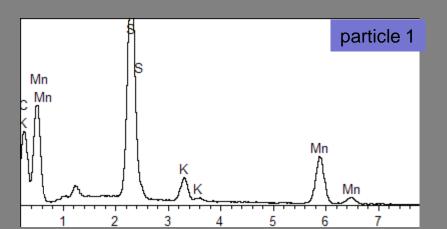
- Fe, S, K and Mn ratios represent ink chemistry and recipe, regardless of thickness
- Ratios containing Ca suggest interference from underlying blue ink
- Ratios of Fe/Si reflect difference in thickness of redaction in areas of analysis

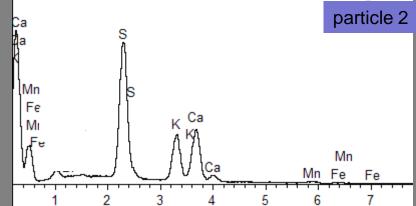
Blue ink: almost invisible to SEM: likely organic-based - similar elements to XRF - Ca- and S-rich particles in areas where blue ink suspected (gypsum as additive or product?)

Brown-black censor's ink: - surface cracked; particles around cracks - elements detected by EDS generally agree with XRF

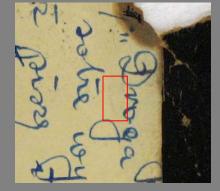


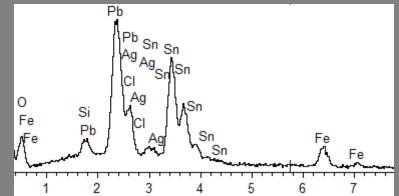

Blue ink: almost invisible to SEM: likely organic-based - similar elements to XRF - Ca- and S-rich particles in areas where blue ink suspected (gypsum as additive or product?)

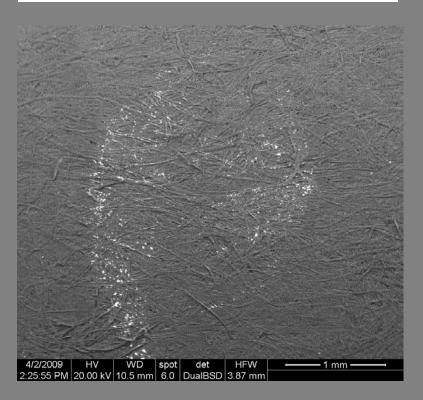

Brown-black censor's ink: - surface cracked; particles around cracks - elements detected by EDS


generally agree with XRF

hexagonal Mn-rich particles
rod-shaped S-, K-,
Ca- rich crystals
near cracks

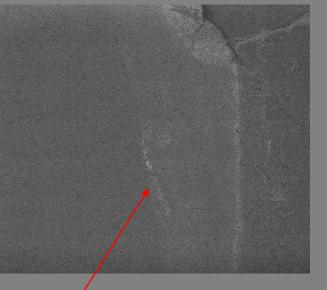

Blue ink: almost invisible to SEM: likely organic-based - similar elements to XRF - Ca- and S-rich particles in areas where blue ink suspected (gypsum as additive or product?)


Brown-black censor's ink: - surface cracked; particles around cracks - elements detected by EDS generally agree with XRF - hexagonal Mn-rich particles - rod-shaped S-, K-, Ca-rich


crystals near cracks

Miscellaneous feature:

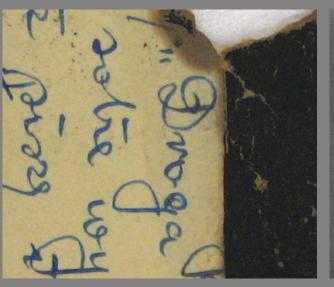
- Pb-Sn particles, possibly metal particles deposited from printing process

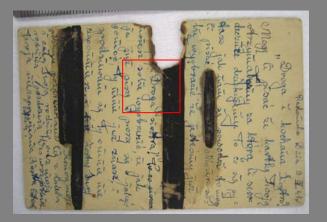




Follow-up analyses of Mandel postcard at LC: Hyperspectral Imaging (HSI)

daylight-balanced fluorescent light, rgb image backscattered electron image, ESEM




feature not seen upon visual inspection

Follow-up analyses of Mandel postcard at LC: Hyperspectral Imaging (HSI)

daylight-balanced fluorescent light, rgb image backscattered electron image, ESEM monochrome camera, infrared (850nm) image

feature not seen upon visual inspection, but confirmed during hyperspectral imaging

Conclusions

- XRF successful at categorizing inks in Wolf Diary as Fecontaining or not, mostly suggesting changes in dilution in parts of diary or delivery of new ink supplies
- Fe-containing ink does not necessarily mean Fe gall ink, e.g., may contain Prussian blue (with or without indigo and aniline dyes)
- XRF successful at categorizing, characterizing and differentiating several of inks on the Mandel postcard
- For non-invasive analysis of inks, XRF especially useful when supplemented by other techniques, such as HSI, ESEM/EDS, FT-IR-ATR, Raman

Conclusions and On-going Work

visible light

780 nm

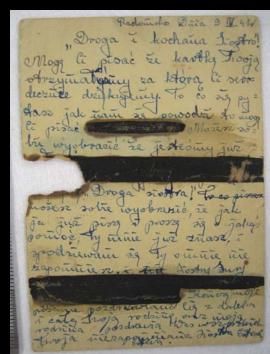
Complementary, non-invasive techniques can provide important clues in the analysis of complex ink mixtures, can guide further steps in their analysis, and can inform conservation treatment decisions without sampling.

Acknowledgments

Eric Hansen, Chief of the Preservation Research & Testing Division Dianne van der Reyden, Director of the Preservation Directorate Fenella France, Research Chemist (HSI)

HOLOCAUST HOLOCAUST MEMORIAL MUSEUM

Aleksandra Borecka, Archivist Anne Marigza, Paper and Book Conservator



Bruce Kaiser

Radomsko 9 April 41 Dear and lovely Sister, I can write that I received your postcard and we warmly thank you. You are ask how we are doing. I can write you can imagine we are already

?? Dear sister! You understand that I am writing because I am asking for some help. You know me, and I expect you to not forget about me, your sister.

..... I am ending this by sending greetings from far away for your and my entire family. Greetings for everybody. Your unforgettable sister Estera.

Estera